本篇文章给大家谈谈数学考研难度,以及数学考研难度排行对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
数学专业考研比较难,数学类的研究生专业共有5个,分别是基础数学,应用数学,概率论与数理统计,计算数学,运筹学与控制论。每个专业的研究生都是不好考的。
基础数学
基础数学研究生考试科目:101思想政治理论;201英、210法任选一门;601数学基础考试1(数学分析);801数学基础考试2(高等代数、解析几何)。
应用数学
概率论与数理统计
概率论与数理统计学是研究如何有效地收集、分析、解释数据,以提取信息、建立模型并进行推断和预测,为寻求规律和作出决策提供依据的一门科学。考试科目为:101思想政治理论;201英语一;702数学分析;802高等代数。
扩展资料:
计算数学
计算数学专业是由数学、物理学、计算机科学、运筹学与控制科学等交叉渗透而形成的一个理科专业,本科已于上个世纪90年代改为信息与计算科学专业。考试科目为:101思想政治理论;201英语一、240法任选一门;601数学基础考试1(数学分析);801数学基础考试2(高等代数、解析几何)。
筹学与控制论
运筹学与控制论是研究各种系统的结构、运作、设计和调控的现代数学学科,是应用数学与系统科学、信息科学的结合点。运筹学与控制论是数学的二级学科,本学科所研究的问题是从众多的可行方案中优选某些目标最优的方案,在社会与经济生活的合理规划、最优设计、最优控制和科学管理中起着十分重要的作用。
研数学难度大。
考研数学的难度并不低,所以需要广大考生全身心地投入复习。考研数学一:高等数学、线性代数、概率论与数理统计。高等数学占56%,线性代数占22%,概率论与数理统计占22%。
高等数学、线性代数。高等数学占78%,线性代数占22%。
总体而言,考研数学的难度还是相对较大的,大家的复习一定要把握重点。考研数学三:微积分、线性代数、概率论与数理统计。微积分占56%,线性代数占22%,概率论与数理统计占22%。
考研数学统考的分为数学一、数学二、数学三。由招生院校决定考哪一种,同一个专业,有可能考试的类型也不一样,考生需要了解清楚。
非统考的考研数学有数学农、以及数学专业所考的(这个难度肯定比其他要大很多)、自主命题学校的数学。
还有考查数学内容的的考试为管理类联考、396经济类联考。
考研数学的难度还是比较大的,考研数学的深度要远远超过大学数学期末考试的难度。整体上来划分难度等级的话,数学一最难、数学二第二难、数学三相对简单。但这个不是绝对的,不同专业考查的范围和要求难度都不同,数学三也有很难的情况出现。
08考研数学相比历年来说比较难。针对考研的数学科目,根据各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种:其中针对工科类的为数学一、数学二;针对经济学和管理学类的为数学三。具体不同专业所使用的试卷种类有具体规定。
考研数学解答题主要考查综合运用知识的能力、逻辑推理能力、空间想象能力以及分析、解决实际问题的能力,包括计算题、证明题及应用题等,综合性较强,但也有部分题目用初等解法就可作答。跨考教育数学教研室李老师表示,解答题解题思路灵活多样,答案有时并不唯一,这就要求同学们不仅会做题,更要能摸清命题人的考查意图,选择最适合的方法进行解答。
考研数学基础阶段,吃透课本,掌握大纲
结合本科教材和前一年的大纲,先吃透基本概念、基本方法和基本定理。数学是一门逻辑性极强的演绎科学,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。对近几年数学答卷的分析表明,考生失分的一个重要原因就是对基本概念、定理记不全、记不牢,理解不准确,基本解题方法掌握不好。
考研初期复习要全面夯实基础,重点弥补薄弱环节。考研数学复习具有基础性和长期性等特点,在考研初期复习阶段考研数学初期复习要排在首位。
数学基础复习就是这样,读书,做题,思考缺一不可。读书是前提,是基础,读懂书才有可能做对题目。做题是关键,是目的。只有会做题,做对题目,快速做题才能应付考试,达到目的。思考是为了更有效的读书和做题。
考研数学不难的,我们管理类研究生,像mba,mem,mpa,mpacc只考初高中的数学
具体如下:
(一)算术:
1、整数:整数及其运算、整除、公倍数、公约数、奇数与偶数、质数与合数
解析:整数及其运算为计算能力的基础,不作为知识点专门考察;
整除作为知识点只考察性质,已有四五年没有考过;但作为解题技巧可以经常运用;
公倍数与公约数一般以应用题形式考察,三四年考一次;
奇数与偶数只考察奇偶数之间的运算性质,三四年考一次;
质数与合数主要考察20以内的质数枚举及质因数分解,几乎每年一题。
2、分数、小数、百分数
解析:分数、小数和百分数只是作为计算能力而不作为知识点特地考察,每年有一两题涉及。
3、比与比例
解析:比与比例主要考察比例的性质及其在应用题中的运用,每年有一两题涉及。
4、数轴与绝对值
解析:数轴与绝对值只考察绝对值和绝对值函数的性质,基本每年一题。
(二)代数:
1、整式:整式及其运算、整式的因式与因式分解
解析:整式及其运算主要考察乘法公式和除法运算,即其整除性,约每两年考一次;
整式的因式与因式分解是解方程、不等式的基础能力,不作为知识点特地考察。
2、分式及其运算
解析:分式及其运算是解分式方程、不等式的基础能力,一般在应用题中涉及。
3、函数:集合、一元二次函数及其图像、指数函数、对数函数
解析:集合是基础概念,主要考察对集合表示的含义理解,约每两年考一次;
一元二次函数及其图像是函数部分的考察重点,主要考察其图像的性质,如最值、增减性等,每年考两三题;
指数函数、对数函数主要考察其增减性及指对数的运算规则,约两三年一题。
4、代数方程:一元一次方程、一元二次方程、二元一次方程组
解析:一元一次方程是解方程的基础,不作为特定知识点考察;
一元二次方程是代数方程部分的考察重点,主要考察其根的性质,如根的判别式Δ、韦达定理等,每年考一两题;
二元一次方程组主要在二元应用题中涉及,考察解方程的能力,每年考一两题。
5、不等式:不等式性质、均值不等式、不等式求解(一元一次不等式组、一元二次不等式、简单的绝对值不等式、简单的分式不等式)
解析:不等式性质是解不等式的基础,极少作为特定知识点考察;
均值不等式的考察形式众多,但只有两类,求最值或最值条件,基本每年一题;
不等式求解极少作为主要知识点考察,一般都隐藏在计算过程中,每年有两三题涉及。
6、数列、等差数列、等比数列
解析:数列主要考察通项式与列举法、通项与前n项的和之间的转换关系,基本每年一题;
等差数列、等比数列主要考察脚标性质及前n项的和,每年一两题。
(三)几何:
1、平面图形:三角形、四边形(平行四边形、矩形、梯形)、圆与扇形
解析:三角形是平面图形的考察重点,主要考察面积计算、边长计算和相似全等,每年至少一题;
四边形较少单独考察,一般都与圆或扇形组成复杂图形,考察面积计算,约两年一题;
圆与扇形的考察重点在于圆周长、弧长、面积、半径等之间的计算,约两年一题。
2、空间几何体:长方体、柱体、球体
解析:空间几何体主要考察长方体、柱体、球体的棱长、半径、面积、体积等的计算,每年一两题。
3、平面解析几何:平面直角坐标系、直线方程与圆的方程、两点间距离公式及点到直线的距离公式
解析:平面直角坐标系是平面解析几何的基础,主要考察四个象限中点坐标的性质,约两三年一题;
直线方程与圆的方程考察的是解析式与图像之间的对应关系、直线与直线之间的位置关系,关键在于作图能力,几乎每年均有试题涉及;
两点间距离公式及点到直线的距离公式考察的是直线与圆、圆与圆之间的位置关系,几乎每年均有试题涉及。
(四)数据分析:
1、计数原理:加法原理、乘法原理、排列与排列数、组合与组合数。
解析:加法原理和乘法原理是计数原理的基础,每题都会考察;
排列与排列数、组合与组合数所考察的主要是排列数、组合数的计算以及与加法原理、乘法原理相配合后计数,每年有三四题涉及。
2、数据描述:平均值、方差与标准差、数据的图表表示(直方图、饼图、数表)
解析:平均值主要是算术平均值的计算,极少作为单独考点;
方差与标准差所考察的是两者的计算方法,极少考察;
数据的图表表示主要考察对数表的分析,约两三年考一次。
3、概率:事件及其简单运算、加法公式、乘法公式、古典概型、独立事件概型。
解析:事件及其简单运算是概率基础,不作为单独考点;
加法公式和乘法公式与加法原理、乘法原理本质相同,作为概率计算的基础,几乎每题都会考察;
古典概型主要考察对分子分母的判定及计算,每年一两题;
独立事件概型主要考察定性定量的分析,每年一两题。
关于数学考研难度和数学考研难度排行的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
(内容来源于网络回答聚合,意为升本学子提供问答帮助,如有错误回答以及广告,请联系管理员删除处理)
部分内容来源于网络转载、学生投稿,如有侵权或对本站有任何意见、建议或者投诉,请联系邮箱(1296178999@qq.com)反馈。 未经本站授权,不得转载、摘编、复制或者建立镜像, 如有违反,本站将追究法律责任!
本文标签: 数学考研难度 上一篇:想读研究生(研究生报考学校) 下一篇:张宇考研数学(张宇考研数学网课在哪里买)